Part (i): Finding the value of k
The sum of probabilities in a probability distribution must equal 1.
Therefore, P(X=1) + P(X=2) + P(X=3) = 1
$$\frac{k}{2} + \frac{k}{3} + \frac{k}{6} = 1$$
$$\frac{3k + 2k + k}{6} = 1$$
$$\frac{6k}{6} = 1$$
$$k = 1$$
Part (ii): Finding P(1 ≤ X < 3)
P(1 ≤ X < 3) = P(X=1) + P(X=2)
$$P(1 \le X < 3) = \frac{k}{2} + \frac{k}{3}$$
Since k = 1,
$$P(1 \le X < 3) = \frac{1}{2} + \frac{1}{3} = \frac{3+2}{6} = \frac{5}{6}$$
Part (iii): Finding E(X)
E(X) = Σ [X * P(X)]
E(X) = (1 * P(X=1)) + (2 * P(X=2)) + (3 * P(X=3))
$$E(X) = (1 \times \frac{1}{2}) + (2 \times \frac{1}{3}) + (3 \times \frac{1}{6})$$
$$E(X) = \frac{1}{2} + \frac{2}{3} + \frac{1}{2} = 1 + \frac{2}{3} = \frac{5}{3}$$
OR
Given: $P(A\cap\overline{B})=\frac{1}{4}$ and $P(\overline{A}\cap B)=\frac{1}{6}$
Since A and B are independent events,
$P(A\cap\overline{B}) = P(A)P(\overline{B}) = P(A)(1-P(B)) = \frac{1}{4}$
$P(\overline{A}\cap B) = P(\overline{A})P(B) = (1-P(A))P(B) = \frac{1}{6}$
Let $P(A) = a$ and $P(B) = b$. Then,
$a(1-b) = \frac{1}{4}$ and $(1-a)b = \frac{1}{6}$
$a - ab = \frac{1}{4}$ and $b - ab = \frac{1}{6}$
Subtracting the two equations:
$a - b = \frac{1}{4} - \frac{1}{6} = \frac{3-2}{12} = \frac{1}{12}$
$a = b + \frac{1}{12}$
Substituting $a$ in the second equation:
$(1 - (b + \frac{1}{12}))b = \frac{1}{6}$
$(\frac{11}{12} - b)b = \frac{1}{6}$
$\frac{11}{12}b - b^2 = \frac{1}{6}$
$b^2 - \frac{11}{12}b + \frac{1}{6} = 0$
$12b^2 - 11b + 2 = 0$
$(4b - 1)(3b - 2) = 0$
$b = \frac{1}{4}$ or $b = \frac{2}{3}$
If $b = \frac{1}{4}$, $a = \frac{1}{4} + \frac{1}{12} = \frac{3+1}{12} = \frac{4}{12} = \frac{1}{3}$
If $b = \frac{2}{3}$, $a = \frac{2}{3} + \frac{1}{12} = \frac{8+1}{12} = \frac{9}{12} = \frac{3}{4}$
Check: If $a = \frac{1}{3}$ and $b = \frac{1}{4}$, $a(1-b) = \frac{1}{3}(1-\frac{1}{4}) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$ and $(1-a)b = (1-\frac{1}{3})\frac{1}{4} = \frac{2}{3} \times \frac{1}{4} = \frac{1}{6}$. This solution is valid.
If $a = \frac{3}{4}$ and $b = \frac{2}{3}$, $a(1-b) = \frac{3}{4}(1-\frac{2}{3}) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$ and $(1-a)b = (1-\frac{3}{4})\frac{2}{3} = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$. This solution is also valid.
Correct Answer: k=1, P(1≤X<3) = 5/6, E(X) = 5/3 OR P(A)=1/3, P(B)=1/4 OR P(A)=3/4, P(B)=2/3
AI generated content. Review strictly for academic accuracy.