The teacher hasn't uploaded a solution for this question yet.
Step 1: Find the derivative of the function \( f(x) \).
Given \( f(x) = \frac{16\sin x}{4 + \cos x} - x \), we need to find \( f'(x) \).
Using the quotient rule for differentiation, \( \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \), we differentiate \( \frac{16\sin x}{4 + \cos x} \):
\( \frac{d}{dx} \left( \frac{16\sin x}{4 + \cos x} \right) = \frac{(4 + \cos x)(16\cos x) - (16\sin x)(-\sin x)}{(4 + \cos x)^2} \)
\( = \frac{64\cos x + 16\cos^2 x + 16\sin^2 x}{(4 + \cos x)^2} \)
\( = \frac{64\cos x + 16(\cos^2 x + \sin^2 x)}{(4 + \cos x)^2} \)
\( = \frac{64\cos x + 16}{(4 + \cos x)^2} \)
\( = \frac{16(4 + \cos x)}{(4 + \cos x)^2} \)
\( = \frac{16}{4 + \cos x} \)
Now, differentiate \( -x \):
\( \frac{d}{dx} (-x) = -1 \)
So, \( f'(x) = \frac{16}{4 + \cos x} - 1 \)
Step 2: Simplify \( f'(x) \).
\( f'(x) = \frac{16 - (4 + \cos x)}{4 + \cos x} \)
\( = \frac{12 - \cos x}{4 + \cos x} \)
Step 3: Analyze the sign of \( f'(x) \) in the interval \( (\frac{\pi}{2}, \pi) \).
In the interval \( (\frac{\pi}{2}, \pi) \), \( \cos x \) is negative and \( -1 \leq \cos x < 0 \).
Therefore, \( 12 - \cos x > 0 \) because \( 12 - \cos x \geq 12 - (-1) = 13 > 0 \).
Also, \( 4 + \cos x > 0 \) because \( 4 + \cos x \geq 4 + (-1) = 3 > 0 \).
However, we need to show that \( f'(x) < 0 \) for the function to be strictly decreasing.
Let's re-examine \( f'(x) = \frac{12 - \cos x}{4 + \cos x} - 1 \). There was an error in the initial calculation of f'(x). The correct derivative is:
\(f'(x) = \frac{16}{4 + \cos x} - 1 = \frac{16 - (4 + \cos x)}{4 + \cos x} = \frac{12 - \cos x}{4 + \cos x}\)
To determine if the function is strictly decreasing, we need to check if \(f'(x) < 0\) in the interval \((\frac{\pi}{2}, \pi)\).
Since \(-1 \le \cos x < 0\) in the interval \((\frac{\pi}{2}, \pi)\), we have:
\(12 - \cos x > 0\) (because \(12 - \cos x \ge 12 - (-1) = 13 > 0\))
\(4 + \cos x > 0\) (because \(4 + \cos x \ge 4 - 1 = 3 > 0\))
Thus, \(f'(x) = \frac{12 - \cos x}{4 + \cos x} > 0\) in the interval \((\frac{\pi}{2}, \pi)\).
There must be an error in the problem statement. Let's reconsider the original function:
\(f(x) = \frac{16\sin x}{4 + \cos x} - x\)
\(f'(x) = \frac{16(4 + \cos x)\cos x - 16\sin x(-\sin x)}{(4 + \cos x)^2} - 1\)
\(f'(x) = \frac{64\cos x + 16\cos^2 x + 16\sin^2 x}{(4 + \cos x)^2} - 1\)
\(f'(x) = \frac{64\cos x + 16}{(4 + \cos x)^2} - 1\)
\(f'(x) = \frac{16(4\cos x + 1)}{(4 + \cos x)^2} - 1\)
\(f'(x) = \frac{16(4\cos x + 1) - (4 + \cos x)^2}{(4 + \cos x)^2}\)
\(f'(x) = \frac{64\cos x + 16 - (16 + 8\cos x + \cos^2 x)}{(4 + \cos x)^2}\)
\(f'(x) = \frac{56\cos x - \cos^2 x}{(4 + \cos x)^2}\)
\(f'(x) = \frac{\cos x(56 - \cos x)}{(4 + \cos x)^2}\)
In the interval \((\frac{\pi}{2}, \pi)\), \(\cos x < 0\), and \(56 - \cos x > 0\), and \((4 + \cos x)^2 > 0\).
Therefore, \(f'(x) < 0\) in the interval \((\frac{\pi}{2}, \pi)\).
Step 4: Conclusion
Since \( f'(x) < 0 \) in the interval \( (\frac{\pi}{2}, \pi) \), the function \( f(x) \) is strictly decreasing in this interval.
Correct Answer: f(x) is strictly decreasing in (π/2, π)
AI generated content. Review strictly for academic accuracy.