The teacher hasn't uploaded a solution for this question yet.
Let the direction ratios of the given lines be $\vec{b_1} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b_2} = -3\hat{i} + 2\hat{j} + 5\hat{k}$.
The line perpendicular to both lines will have direction ratios proportional to the cross product of $\vec{b_1}$ and $\vec{b_2}$.
$\vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -3 & 2 & 5 \end{vmatrix} = (10-6)\hat{i} - (5+9)\hat{j} + (2+6)\hat{k} = 4\hat{i} - 14\hat{j} + 8\hat{k}$
The position vector of the point $(2, 1, 3)$ is $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$.
The vector equation of the line is given by $\vec{r} = \vec{a} + \lambda \vec{b}$, where $\lambda$ is a scalar.
$\vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda (4\hat{i} - 14\hat{j} + 8\hat{k})$
Correct Answer: $\vec{r} = (2\hat{i} + \hat{j} + 3\hat{k}) + \lambda (4\hat{i} - 14\hat{j} + 8\hat{k})$
AI generated content. Review strictly for academic accuracy.