MCQ_SINGLE
Let $X = {1, 2, 3, 4, 5}$. The number of different ordered pairs $(Y, Z)$ that can be formed such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z$ is empty, is:
MCQ_SINGLE
Let $A = {2, 3, 4, 5, ....., 30}$ and '$\simeq$' be an equivalence relation on $A \times A$, defined by $(a, b) \simeq (c, d)$, if and only if $ad = bc$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4, 3)$ is equal to :