Class JEE Mathematics Sets, Relations, and Functions Q #1014
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 22nd January Morning Shift MCQ SINGLE
The number of non-empty equivalence relations on the set ${1, 2, 3}$ is :
(A) $7$
(B) $4$
(C) $5$
(D) $6$
Correct Answer: C
Explanation
An equivalence relation on a finite set is uniquely determined by its partition into equivalence classes. Counting the number of ways to partition the set ${1, 2, 3}$:

1. Three blocks: Each element in its own block. There is only one way: ${{1}, {2}, {3}}$.

2. Two blocks: We can have ${{1, 2}, {3}}$, ${{1, 3}, {2}}$, or ${{2, 3}, {1}}$. There are 3 ways.

3. One block: All elements together. There is only one way: ${{1, 2, 3}}$.

In total, there are $1 + 3 + 1 = 5$ distinct partitions, which means there are 5 equivalence relations on the set ${1, 2, 3}$.

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Two newspapers A and B are published in a city. It is known that $25$% of the city populations reads A and $20$% reads B while $8$% reads both A and B. Further, $30$% of those who read A but not B look into advertisements and $40$% of those who read B but not A also look into advertisements, while $50$% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
MCQ_SINGLE
Out of all the patients in a hospital 89% are found to be suffering from heart ailment and 98% are suffering from lungs infection. If K% of them are suffering from both ailments, then K can not belong to the set :
NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
View All Questions