Class JEE Mathematics Sets, Relations, and Functions Q #1083
COMPETENCY BASED
REMEMBER
4 Marks 2023 JEE Main 2023 (Online) 13th April Evening Shift NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________

More from this Chapter

NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Let $S = \mathbb{N} \cup \{0\}$. Define a relation R from S to $\mathbb{R}$ by: $R = \{(x, y) : \log_e y = x \log_e (\frac{2}{5}), x \in S, y \in \mathbb{R}\}$. Then, the sum of all the elements in the range of $R$ is equal to:
MCQ_SINGLE
In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is
MCQ_SINGLE
Let $A = \{ (\alpha, \beta) \in R \times R : |\alpha - 1| \leq 4 \text{ and } |\beta - 5| \leq 6 \}$ and $B = \{ (\alpha, \beta) \in R \times R : 16(\alpha - 2)^2 + 9(\beta - 6)^2 \leq 144 \}$. Then
View All Questions