MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then:
MCQ_SINGLE
Let $A = {0, 1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $(x, y) \in R$ if and only if $\max{x, y} \in {3, 4}$. Then among the statements
(S1): The number of elements in $R$ is $18$, and
(S2): The relation $R$ is symmetric but neither reflexive nor transitive
MCQ_SINGLE
Consider the relations $R_1$ and $R_2$ defined as $aR_1b \Leftrightarrow a^2 + b^2 = 1$ for all $a, b \in R$ and $(a, b)R_2(c, d) \Leftrightarrow a+ d = b + c$ for all $(a, b), (c, d) \in N \times N$. Then: