MCQ_SINGLE
Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and R be a relation on A defined by $xRy$ if and only if $2x - y \in \{0, 1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to:
MCQ_SINGLE
Consider the relations $R_1$ and $R_2$ defined as $aR_1b \Leftrightarrow a^2 + b^2 = 1$ for all $a, b \in R$ and $(a, b)R_2(c, d) \Leftrightarrow a+ d = b + c$ for all $(a, b), (c, d) \in N \times N$. Then: