Explanation
$S = \{1, 2, 3, ..., 10\}$
$P(S) =$ power set of $S$
$AR_1B \implies (A \cap B^c) \cup (A^c \cap B) = \emptyset$
$R_1$ is reflexive, symmetric
For transitive:
$(A \cap B^c) \cup (A^c \cap B) = \emptyset$; $\emptyset = \emptyset \implies A = B$
$(B \cap C^c) \cup (B^c \cap C) = \emptyset \implies B = C$
$\therefore A = C \implies R_1$ is an equivalence relation.
$R_2 \equiv A \cup B^c = A^c \cup B$
$R_2 \implies$ Reflexive, symmetric
For transitive:
$A \cup B^c = A^c \cup B \implies A = B$
$B \cup C^c = B^c \cup C \implies B = C$
$\therefore A = C \implies A \cup C^c = A^c \cup C \implies R_2$ is an equivalence relation.