NUMERICAL
For $n \geq 2$, let $S_n$ denote the set of all subsets of $\{1,2, \ldots, n\}$ with no two consecutive numbers. For example $\{1,3,5\} \in S_6$, but $\{1,2,4\} \notin S_6$. Then $n\left(S_5\right)$ is equal to ________
MCQ_SINGLE
Let $A = {2, 3, 4}$ and $B = {8, 9, 12}$. Then the number of elements in the relation $R = {((a_1, b_1), (a_2, b_2)) \in (A \times B, A \times B) : a_1$ divides $b_2$ and $a_2$ divides $b_1}$ is :
NUMERICAL
Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.