NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
NUMERICAL
Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.
MCQ_SINGLE
Let $A = {2, 3, 6, 8, 9, 11}$ and $B = {1, 4, 5, 10, 15}$. Let $R$ be a relation on $A \times B$ defined by $(a, b)R(c, d)$ if and only if $3ad - 7bc$ is an even integer. Then the relation $R$ is