NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
MCQ_SINGLE
Consider the following relations $R = \{(x, y) | x, y$ are real numbers and $x = wy$ for some rational number $w\}$; $S = \{(\frac{m}{n}, \frac{p}{q}) | m, n, p$ and $q$ are integers such that $n, q \neq 0$ and $qm = pn\}$. Then