Class JEE Mathematics Sets, Relations, and Functions Q #1044
KNOWLEDGE BASED
APPLY
4 Marks 2022 JEE Main 2022 (Online) 28th June Evening Shift MCQ SINGLE
Let $R_1 = \{(a, b) \in N \times N : |a - b| \le 13\}$ and $R_2 = \{(a, b) \in N \times N : |a - b| \ne 13\}$. Then on N :
(A) Both $R_1$ and $R_2$ are equivalence relations
(B) Neither $R_1$ nor $R_2$ is an equivalence relation
(C) $R_1$ is an equivalence relation but $R_2$ is not
(D) $R_2$ is an equivalence relation but $R_1$ is not
Correct Answer: B
Explanation
To check if $R_1$ and $R_2$ are equivalence relations, we need to verify if they are reflexive, symmetric, and transitive.

For $R_1 = \{(a, b) \in N \times N : |a - b| \le 13\}$:
Reflexive: For any $a \in N$, $|a - a| = 0 \le 13$. So, $(a, a) \in R_1$. Thus, $R_1$ is reflexive.
Symmetric: If $(a, b) \in R_1$, then $|a - b| \le 13$. This implies $|b - a| \le 13$, so $(b, a) \in R_1$. Thus, $R_1$ is symmetric.
Transitive: Consider $a = 2, b = 11, c = 19$. Then $|2 - 11| = 9 \le 13$, so $(2, 11) \in R_1$. Also, $|11 - 19| = 8 \le 13$, so $(11, 19) \in R_1$. However, $|2 - 19| = 17 > 13$, so $(2, 19) \notin R_1$. Thus, $R_1$ is not transitive.
Since $R_1$ is not transitive, $R_1$ is not an equivalence relation.

For $R_2 = \{(a, b) \in N \times N : |a - b| \ne 13\}$:
Reflexive: For any $a \in N$, $|a - a| = 0 \ne 13$. So, $(a, a) \in R_2$. Thus, $R_2$ is reflexive.
Symmetric: If $(a, b) \in R_2$, then $|a - b| \ne 13$. This implies $|b - a| \ne 13$, so $(b, a) \in R_2$. Thus, $R_2$ is symmetric.
Transitive: Consider $a = 13, b = 3, c = 26$. Then $|13 - 3| = 10 \ne 13$, so $(13, 3) \in R_2$. Also, $|3 - 26| = 23 \ne 13$, so $(3, 26) \in R_2$. However, $|13 - 26| = 13$, so $(13, 26) \notin R_2$. Thus, $R_2$ is not transitive.
Since $R_2$ is not transitive, $R_2$ is not an equivalence relation.

Therefore, neither $R_1$ nor $R_2$ is an equivalence relation.

More from this Chapter

NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
MCQ_SINGLE
Two newspapers A and B are published in a city. It is known that $25$% of the city populations reads A and $20$% reads B while $8$% reads both A and B. Further, $30$% of those who read A but not B look into advertisements and $40$% of those who read B but not A also look into advertisements, while $50$% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
MCQ_SINGLE
Let $W$ denote the words in the English dictionary. Define the relation $R$ by $R = {(x, y) ∈ W × W |$ the words $x$ and $y$ have at least one letter in common}. Then, $R$ is
View All Questions