MCQ_SINGLE
Let a set $A = A_1 \cup A_2 \cup ..... \cup A_k$, where $A_i \cap A_j = \phi$ for $i \neq j$, $1 \le j, j \le k$. Define the relation R from A to A by $R = \{(x, y) : y \in A_i$ if and only if $x \in A_i, 1 \le i \le k\}$. Then, R is :
MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then:
NUMERICAL
Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.