cbqfy
com
Competency Based Questions
Back to Chapter
Class CBSE Class 12
Mathematics
Relations and Functions
Q #977
COMPETENCY BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
1 Marks
2025
AISSCE(Board Exam)
ASSERTION REASON
Assertion:
Assertion (A): Let $f(x) = e^{x}$ and $g(x) = \log x$. Then $(f + g)x = e^{x} + \log x$ where domain of $(f + g)$ is $\mathbb{R}$.
Reason:
Reason (R): $\text{Dom}(f + g) = \text{Dom}(f) \cap \text{Dom}(g)$.
(A)
Both A and R are true and R is the correct explanation of A.
(B)
Both A and R are true but R is NOT the correct explanation of A.
(C)
A is true but R is false.
(D)
A is false but R is true.
AI Explanation
Prev
Finish
Correct Answer: D
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
A function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \(f(x)=x^{2}-4x+5\) is:
MCQ_SINGLE
If \(f:N\rightarrow W\) is defined as \(f(n)=\begin{cases}\frac{n}{2},&if~n~is~even\\ 0,&if~n~is~odd\end{cases}\), then f is:
LA
A relation $R$ is defined on a set of real numbers $\mathbb{R}$ as:$$R = \{(x, y) : x \cdot y \text{ is an irrational number}\}$$Check whether $R$ is reflexive, symmetric, and transitive or not.
MCQ_SINGLE
Let \(R_{+}\) denote the set of all non-negative real numbers. Then the function \(f:R_{+}\rightarrow R_{+}\) defined as \(f(x)=x^{2}+1\) is :
MCQ_SINGLE
Let \(f:R_{+}\rightarrow[-5,\infty)\) be defined as \(f(x)=9x^{2}+6x-5\), where \(R_{+}\) is the set of all non-negative real numbers. Then, f is:
View All Questions