The teacher hasn't uploaded a solution for this question yet.
Let $I = \int\frac{e^{x}}{\sqrt{5-4e^{x}-e^{2x}}}dx$
Substitute $u = e^x$, so $du = e^x dx$.
Then, $I = \int\frac{1}{\sqrt{5-4u-u^{2}}}du = \int\frac{1}{\sqrt{5-(u^{2}+4u)}}du$
Complete the square in the denominator: $u^2 + 4u = (u+2)^2 - 4$.
So, $5 - (u^2 + 4u) = 5 - ((u+2)^2 - 4) = 9 - (u+2)^2$.
Thus, $I = \int\frac{1}{\sqrt{9-(u+2)^{2}}}du = \int\frac{1}{\sqrt{3^{2}-(u+2)^{2}}}du$
Now, use the formula $\int\frac{1}{\sqrt{a^{2}-x^{2}}}dx = \sin^{-1}(\frac{x}{a}) + C$.
Here, $a = 3$ and $x = u+2$.
So, $I = \sin^{-1}(\frac{u+2}{3}) + C$
Substitute back $u = e^x$.
Therefore, $I = \sin^{-1}(\frac{e^{x}+2}{3}) + C$
Correct Answer: $\sin^{-1}(\frac{e^{x}+2}{3}) + C$
AI generated content. Review strictly for academic accuracy.