The teacher hasn't uploaded a solution for this question yet.
Let's decompose the integrand into partial fractions:
$\frac{x^2 + x + 1}{(x+1)^2(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+2}$
Multiplying both sides by $(x+1)^2(x+2)$, we get:
$x^2 + x + 1 = A(x+1)(x+2) + B(x+2) + C(x+1)^2$
Expanding the terms:
$x^2 + x + 1 = A(x^2 + 3x + 2) + B(x+2) + C(x^2 + 2x + 1)$
$x^2 + x + 1 = Ax^2 + 3Ax + 2A + Bx + 2B + Cx^2 + 2Cx + C$
Grouping like terms:
$x^2 + x + 1 = (A+C)x^2 + (3A+B+2C)x + (2A+2B+C)$
Comparing coefficients, we get the following system of equations:
1) $A + C = 1$
2) $3A + B + 2C = 1$
3) $2A + 2B + C = 1$
From equation (1), $C = 1 - A$. Substituting this into equations (2) and (3):
2) $3A + B + 2(1-A) = 1 \Rightarrow A + B = -1$
3) $2A + 2B + (1-A) = 1 \Rightarrow A + 2B = 0$
Solving the system of equations $A + B = -1$ and $A + 2B = 0$, we get:
Subtracting the first equation from the second, we get $B = 1$.
Substituting $B = 1$ into $A + B = -1$, we get $A = -2$.
Since $C = 1 - A$, we have $C = 1 - (-2) = 3$.
Thus, $A = -2$, $B = 1$, and $C = 3$.
So, $\frac{x^2 + x + 1}{(x+1)^2(x+2)} = \frac{-2}{x+1} + \frac{1}{(x+1)^2} + \frac{3}{x+2}$
Now, we integrate:
$\int \frac{x^2 + x + 1}{(x+1)^2(x+2)} dx = \int \left( \frac{-2}{x+1} + \frac{1}{(x+1)^2} + \frac{3}{x+2} \right) dx$
$= -2 \int \frac{1}{x+1} dx + \int \frac{1}{(x+1)^2} dx + 3 \int \frac{1}{x+2} dx$
$= -2 \ln|x+1| - \frac{1}{x+1} + 3 \ln|x+2| + C$
Combining the logarithmic terms:
$= \ln\left| \frac{(x+2)^3}{(x+1)^2} \right| - \frac{1}{x+1} + C$
Correct Answer: -2 ln|x+1| - 1/(x+1) + 3 ln|x+2| + C
AI generated content. Review strictly for academic accuracy.