The teacher hasn't uploaded a solution for this question yet.
We need to evaluate \(\int\sqrt{1+\sin x}dx\).
We can rewrite \(1+\sin x\) using trigonometric identities:
\(1+\sin x = \sin^2\frac{x}{2} + \cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} = (\sin\frac{x}{2} + \cos\frac{x}{2})^2\)
So, \(\sqrt{1+\sin x} = \sqrt{(\sin\frac{x}{2} + \cos\frac{x}{2})^2} = |\sin\frac{x}{2} + \cos\frac{x}{2}|\)
Assuming \(\sin\frac{x}{2} + \cos\frac{x}{2} > 0\), we have:
\(\int\sqrt{1+\sin x}dx = \int (\sin\frac{x}{2} + \cos\frac{x}{2})dx\)
\(= \int \sin\frac{x}{2}dx + \int \cos\frac{x}{2}dx\)
\(= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} + C\)
\(= 2(\sin\frac{x}{2} - \cos\frac{x}{2}) + C\)
Correct Answer: \(2(\sin\frac{x}{2}-\cos\frac{x}{2})+C\)
AI generated content. Review strictly for academic accuracy.