Class CBSE Class 12 Mathematics Integrals Q #625
KNOWLEDGE BASED
UNDERSTAND
1 Marks 2025 AISSCE(Board Exam) MCQ SINGLE
\(\int\sqrt{1+\sin x}dx\) is equal to :
(A) \(2(-\sin\frac{x}{2}+\cos\frac{x}{2})+C\)
(B) \(2(\sin\frac{x}{2}-\cos\frac{x}{2})+C\)
(C) \(-2(\sin\frac{x}{2}+\cos\frac{x}{2})+C\)
(D) \(2(\sin\frac{x}{2}+\cos\frac{x}{2})+C\)

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

We need to evaluate \(\int\sqrt{1+\sin x}dx\).

We can rewrite \(1+\sin x\) using trigonometric identities:

\(1+\sin x = \sin^2\frac{x}{2} + \cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} = (\sin\frac{x}{2} + \cos\frac{x}{2})^2\)

So, \(\sqrt{1+\sin x} = \sqrt{(\sin\frac{x}{2} + \cos\frac{x}{2})^2} = |\sin\frac{x}{2} + \cos\frac{x}{2}|\)

Assuming \(\sin\frac{x}{2} + \cos\frac{x}{2} > 0\), we have:

\(\int\sqrt{1+\sin x}dx = \int (\sin\frac{x}{2} + \cos\frac{x}{2})dx\)

\(= \int \sin\frac{x}{2}dx + \int \cos\frac{x}{2}dx\)

\(= -2\cos\frac{x}{2} + 2\sin\frac{x}{2} + C\)

\(= 2(\sin\frac{x}{2} - \cos\frac{x}{2}) + C\)

Correct Answer: \(2(\sin\frac{x}{2}-\cos\frac{x}{2})+C\)

AI Suggestion: Option B

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an UNDERSTAND question because it requires the student to comprehend the trigonometric identities and apply them to solve the integral.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to follow a specific procedure to solve the integral, involving trigonometric identities and integration techniques.
Syllabus Audit: In the context of CBSE Class 12, this is classified as KNOWLEDGE. The question directly tests the student's knowledge of integration and trigonometric identities as covered in the textbook.