The teacher hasn't uploaded a solution for this question yet.
Write the equations of the lines in parametric form:<\/strong><\/p>
Line 1: \(\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} = \lambda\) Line 2: \(\frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{-2} = \mu\)
\(x = 3\lambda + 1\), \(y = 2\lambda - 1\), \(z = 5\lambda + 1\)
\(x = 4\mu - 2\), \(y = 3\mu + 1\), \(z = -2\mu - 1\)
Equate the coordinates to find the point of intersection (if it exists):<\/strong><\/p>
\(3\lambda + 1 = 4\mu - 2\) (1)
\(2\lambda - 1 = 3\mu + 1\) (2)
\(5\lambda + 1 = -2\mu - 1\) (3)
Solve equations (1) and (2) for \(\lambda\) and \(\mu\):<\/strong><\/p>
From (1): \(3\lambda - 4\mu = -3\) (4) Multiply (4) by 2 and (5) by 3: Subtract (6) from (7): Substitute \(\mu = -12\) into (5):
From (2): \(2\lambda - 3\mu = 2\) (5)
\(6\lambda - 8\mu = -6\) (6)
\(6\lambda - 9\mu = 6\) (7)
\(-\mu = 12\)
\(\mu = -12\)
\(2\lambda - 3(-12) = 2\)
\(2\lambda + 36 = 2\)
\(2\lambda = -34\)
\(\lambda = -17\)
Check if these values of \(\lambda\) and \(\mu\) satisfy equation (3):<\/strong><\/p>
Substitute \(\lambda = -17\) and \(\mu = -12\) into (3): This is not true, so the lines do not intersect.
\(5(-17) + 1 = -2(-12) - 1\)
\(-85 + 1 = 24 - 1\)
\(-84 = 23\)
Correct Answer: The lines do not intersect.<\/strong>
AI generated content. Review strictly for academic accuracy.