The teacher hasn't uploaded a solution for this question yet.
Given: \(y = x^{\frac{1}{x}}\)
Taking the natural logarithm of both sides:
\(\ln y = \ln \left(x^{\frac{1}{x}}\right)\)
\(\ln y = \frac{1}{x} \ln x\)
Differentiating both sides with respect to \(x\):
\(\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{x} \ln x\right)\)
Using the product rule:
\(\frac{1}{y} \frac{dy}{dx} = \left(-\frac{1}{x^2}\right) \ln x + \frac{1}{x} \left(\frac{1}{x}\right)\)
\(\frac{1}{y} \frac{dy}{dx} = -\frac{\ln x}{x^2} + \frac{1}{x^2}\)
\(\frac{1}{y} \frac{dy}{dx} = \frac{1 - \ln x}{x^2}\)
Now, solve for \(\frac{dy}{dx}\):
\(\frac{dy}{dx} = y \left(\frac{1 - \ln x}{x^2}\right)\)
\(\frac{dy}{dx} = x^{\frac{1}{x}} \left(\frac{1 - \ln x}{x^2}\right)\)
Evaluate \(\frac{dy}{dx}\) at \(x = 1\):
\(\left.\frac{dy}{dx}\right|_{x=1} = (1)^{\frac{1}{1}} \left(\frac{1 - \ln 1}{1^2}\right)\)
\(\left.\frac{dy}{dx}\right|_{x=1} = 1 \left(\frac{1 - 0}{1}\right)\)
\(\left.\frac{dy}{dx}\right|_{x=1} = 1\)
Correct Answer: 1
AI generated content. Review strictly for academic accuracy.