Class CBSE Class 12 Mathematics Matrices and Determinants Q #924
KNOWLEDGE BASED
APPLY
5 Marks 2023 LA
If $A=\begin{bmatrix}1&2&-2\\ -1&3&0\\ 0&-2&1\end{bmatrix}$ and $B^{-1}=\begin{bmatrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{bmatrix},$ find $(AB)^{-1}$.

OR Solve the following system of equations by matrix method :$ x+2y+3z=6, 2x-y+z=2, 3x+2y-2z=3.$

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

Part 1: Finding (AB)-1

Given: \( A=\begin{bmatrix}1&2&-2\\ -1&3&0\\ 0&-2&1\end{bmatrix} \) and \( B^{-1}=\begin{bmatrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{bmatrix} \)

We need to find \( (AB)^{-1} \). We know that \( (AB)^{-1} = B^{-1}A^{-1} \).

First, we need to find \( A^{-1} \).

|A| = 1(3*1 - 0*(-2)) - 2((-1)*1 - 0*0) + (-2)((-1)*(-2) - 3*0) = 1(3) - 2(-1) - 2(2) = 3 + 2 - 4 = 1

Since |A| = 1, A-1 exists.

The matrix of cofactors of A is:

Cof(A) = \(\begin{bmatrix}3&1&2\\ -2&1&2\\ 6&2&5\end{bmatrix}\)

Adj(A) = (Cof(A))T = \(\begin{bmatrix}3&-2&6\\ 1&1&2\\ 2&2&5\end{bmatrix}\)

A-1 = (1/|A|) * Adj(A) = \(\begin{bmatrix}3&-2&6\\ 1&1&2\\ 2&2&5\end{bmatrix}\)

Now, we can find (AB)-1 = B-1A-1

(AB)-1 = \(\begin{bmatrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{bmatrix}\) \(\begin{bmatrix}3&-2&6\\ 1&1&2\\ 2&2&5\end{bmatrix}\)

(AB)-1 = \(\begin{bmatrix}9-1+2&-6-1+2&18-2+5\\ -45+6-10&30+6-10&-90+12-25\\ 15-2+4&-10-2+4&30-4+10\end{bmatrix}\)

(AB)-1 = \(\begin{bmatrix}10&-5&21\\ -49&26&-103\\ 17&-8&36\end{bmatrix}\)

Part 2: Solving the system of equations by matrix method

Given system of equations:

\( x+2y+3z=6 \)

\( 2x-y+z=2 \)

\( 3x+2y-2z=3 \)

We can write this system in matrix form as AX = B, where

A = \(\begin{bmatrix}1&2&3\\ 2&-1&1\\ 3&2&-2\end{bmatrix}\), X = \(\begin{bmatrix}x\\ y\\ z\end{bmatrix}\), B = \(\begin{bmatrix}6\\ 2\\ 3\end{bmatrix}\)

First, we find the determinant of A:

|A| = 1((-1)*(-2) - 1*2) - 2(2*(-2) - 1*3) + 3(2*2 - (-1)*3) = 1(2-2) - 2(-4-3) + 3(4+3) = 0 - 2(-7) + 3(7) = 0 + 14 + 21 = 35

Since |A| = 35, A-1 exists.

The matrix of cofactors of A is:

Cof(A) = \(\begin{bmatrix}0&-7&7\\ 10&-11& -4\\ 5&5&-5\end{bmatrix}\)

Adj(A) = (Cof(A))T = \(\begin{bmatrix}0&10&5\\ -7&-11&5\\ 7&-4&-5\end{bmatrix}\)

A-1 = (1/|A|) * Adj(A) = (1/35) \(\begin{bmatrix}0&10&5\\ -7&-11&5\\ 7&-4&-5\end{bmatrix}\)

Now, we can find X = A-1B

X = (1/35) \(\begin{bmatrix}0&10&5\\ -7&-11&5\\ 7&-4&-5\end{bmatrix}\) \(\begin{bmatrix}6\\ 2\\ 3\end{bmatrix}\)

X = (1/35) \(\begin{bmatrix}0+20+15\\ -42-22+15\\ 42-8-15\end{bmatrix}\)

X = (1/35) \(\begin{bmatrix}35\\ -49\\ 19\end{bmatrix}\)

X = \(\begin{bmatrix}1\\ -7/5\\ 19/35\end{bmatrix}\)

Therefore, x = 1, y = -7/5, z = 19/35

Correct Answer: (AB)-1 = \(\begin{bmatrix}10&-5&21\\ -49&26&-103\\ 17&-8&36\end{bmatrix}\) OR x = 1, y = -7/5, z = 19/35

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an APPLY question because it requires students to apply the properties of inverse of matrices and matrix multiplication to find the inverse of the product of two matrices or to apply matrix methods to solve a system of linear equations.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to follow a specific procedure to calculate the inverse of a matrix product or to solve a system of linear equations using matrix methods. This involves knowing the steps and algorithms for matrix multiplication, finding inverses, and applying these to solve the given problem.
Syllabus Audit: In the context of CBSE Class 12, this is classified as KNOWLEDGE. The question directly assesses the student's understanding and application of matrix algebra concepts as taught in the textbook.