Class CBSE Class 12 Mathematics Matrices and Determinants Q #739
KNOWLEDGE BASED
APPLY
1 Marks 2024 MCQ SINGLE
If \(F(x)=\begin{bmatrix}\cos~x&-\sin~x&0\\ \sin~x&\cos~x&0\\ 0&0&1\end{bmatrix}\) and \([F(x)]^{2}=F(kx)\), then the value of k is :
(A) 1
(B) 2
(C) 0
(D) -2
Correct Answer: B

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

  1. First, calculate \( [F(x)]^2 \):

    \( [F(x)]^2 = F(x) \cdot F(x) = \begin{bmatrix}\cos~x&-\sin~x&0\\ \sin~x&\cos~x&0\\ 0&0&1\end{bmatrix} \cdot \begin{bmatrix}\cos~x&-\sin~x&0\\ \sin~x&\cos~x&0\\ 0&0&1\end{bmatrix} \)

  2. Perform the matrix multiplication:

    \( [F(x)]^2 = \begin{bmatrix}\cos^2 x - \sin^2 x&-\cos x \sin x - \sin x \cos x&0\\ \sin x \cos x + \cos x \sin x&-\sin^2 x + \cos^2 x&0\\ 0&0&1\end{bmatrix} \)

  3. Simplify using trigonometric identities:

    \( [F(x)]^2 = \begin{bmatrix}\cos 2x&-\sin 2x&0\\ \sin 2x&\cos 2x&0\\ 0&0&1\end{bmatrix} \)

  4. We are given that \( [F(x)]^2 = F(kx) \). Therefore:

    \( F(kx) = \begin{bmatrix}\cos kx&-\sin kx&0\\ \sin kx&\cos kx&0\\ 0&0&1\end{bmatrix} \)

  5. Comparing \( [F(x)]^2 \) with \( F(kx) \), we have:

    \( \begin{bmatrix}\cos 2x&-\sin 2x&0\\ \sin 2x&\cos 2x&0\\ 0&0&1\end{bmatrix} = \begin{bmatrix}\cos kx&-\sin kx&0\\ \sin kx&\cos kx&0\\ 0&0&1\end{bmatrix} \)

  6. By comparing the elements of the matrices, we can deduce that:

    \( \cos 2x = \cos kx \) and \( \sin 2x = \sin kx \)

  7. Therefore, \( k = 2 \).

Correct Answer: 2

AI Suggestion: Option B

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an APPLY question because the student needs to apply their knowledge of matrix multiplication and trigonometric identities to find the value of k.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to follow a specific procedure: matrix multiplication, trigonometric simplification, and comparison to find the value of k.
Syllabus Audit: In the context of CBSE Class 12, this is classified as KNOWLEDGE. The question directly tests the student's understanding of matrix operations and trigonometric functions, which are core concepts covered in the textbook.