The teacher hasn't uploaded a solution for this question yet.
The given differential equation is: $$\frac{dy}{dx} + \sec^{2}x \cdot y = \tan x \cdot \sec^{2}x$$
This is a linear differential equation of the form $$\frac{dy}{dx} + P(x)y = Q(x)$$, where $$P(x) = \sec^{2}x$$ and $$Q(x) = \tan x \cdot \sec^{2}x$$
The integrating factor (IF) is given by: $$IF = e^{\int P(x) dx} = e^{\int \sec^{2}x dx} = e^{\tan x}$$
The general solution is given by: $$y \cdot IF = \int (Q(x) \cdot IF) dx + C$$
$$y \cdot e^{\tan x} = \int (\tan x \cdot \sec^{2}x \cdot e^{\tan x}) dx + C$$
Let $$u = \tan x$$, then $$\frac{du}{dx} = \sec^{2}x$$, so $$du = \sec^{2}x dx$$
The integral becomes: $$\int u \cdot e^{u} du$$
Using integration by parts: $$\int u \cdot e^{u} du = u \cdot e^{u} - \int e^{u} du = u \cdot e^{u} - e^{u} + C_{1} = e^{u}(u - 1) + C_{1}$$
Substituting back $$u = \tan x$$: $$\int \tan x \cdot \sec^{2}x \cdot e^{\tan x} dx = e^{\tan x}(\tan x - 1) + C_{1}$$
Therefore, the general solution is: $$y \cdot e^{\tan x} = e^{\tan x}(\tan x - 1) + C$$
$$y = \tan x - 1 + Ce^{-\tan x}$$
Given the condition $$y(0) = 0$$: $$0 = \tan(0) - 1 + Ce^{-\tan(0)}$$
$$0 = 0 - 1 + Ce^{0}$$
$$0 = -1 + C$$
$$C = 1$$
The particular solution is: $$y = \tan x - 1 + e^{-\tan x}$$
Correct Answer: y = tan x - 1 + e^(-tan x)
AI generated content. Review strictly for academic accuracy.