The teacher hasn't uploaded a solution for this question yet.
First, we need to calculate $A^2$:
$A^2 = A \cdot A = \begin{bmatrix}1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3\end{bmatrix} \cdot \begin{bmatrix}1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3\end{bmatrix} = \begin{bmatrix}1+0+4 & 0+0+0 & 2+0+6\\ 0+0+2 & 0+4+0 & 0+2+3\\ 2+0+6 & 0+0+0 & 4+0+9\end{bmatrix} = \begin{bmatrix}5 & 0 & 8\\ 2 & 4 & 5\\ 8 & 0 & 13\end{bmatrix}$
Next, we calculate $A^3$:
$A^3 = A \cdot A^2 = \begin{bmatrix}1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3\end{bmatrix} \cdot \begin{bmatrix}5 & 0 & 8\\ 2 & 4 & 5\\ 8 & 0 & 13\end{bmatrix} = \begin{bmatrix}5+0+16 & 0+0+0 & 8+0+26\\ 0+4+8 & 0+8+0 & 0+10+13\\ 10+0+24 & 0+0+0 & 16+0+39\end{bmatrix} = \begin{bmatrix}21 & 0 & 34\\ 12 & 8 & 23\\ 34 & 0 & 55\end{bmatrix}$
Now, we calculate $6A^2$:
$6A^2 = 6 \cdot \begin{bmatrix}5 & 0 & 8\\ 2 & 4 & 5\\ 8 & 0 & 13\end{bmatrix} = \begin{bmatrix}30 & 0 & 48\\ 12 & 24 & 30\\ 48 & 0 & 78\end{bmatrix}$
Next, we calculate $7A$:
$7A = 7 \cdot \begin{bmatrix}1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3\end{bmatrix} = \begin{bmatrix}7 & 0 & 14\\ 0 & 14 & 7\\ 14 & 0 & 21\end{bmatrix}$
And $2I$:
$2I = 2 \cdot \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{bmatrix}$
Finally, we substitute these into the equation:
$A^3 - 6A^2 + 7A + 2I = \begin{bmatrix}21 & 0 & 34\\ 12 & 8 & 23\\ 34 & 0 & 55\end{bmatrix} - \begin{bmatrix}30 & 0 & 48\\ 12 & 24 & 30\\ 48 & 0 & 78\end{bmatrix} + \begin{bmatrix}7 & 0 & 14\\ 0 & 14 & 7\\ 14 & 0 & 21\end{bmatrix} + \begin{bmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{bmatrix}$
$= \begin{bmatrix}21-30+7+2 & 0-0+0+0 & 34-48+14+0\\ 12-12+0+0 & 8-24+14+2 & 23-30+7+0\\ 34-48+14+0 & 0-0+0+0 & 55-78+21+2\end{bmatrix} = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix} = O$
Correct Answer: O
AI generated content. Review strictly for academic accuracy.