Class CBSE Class 12 Mathematics Three Dimensional Geometry Q #887
COMPETENCY BASED
APPLY
5 Marks 2023 LA
Find the equations of all the sides of the parallelogram ABCD whose vertices are $A(4,7,8), B(2,3,4), C(-1,-2,1)$ and $D(1,2,5)$. Also, find the coordinates of the foot of the perpendicular from A to CD.

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

1. Find the equations of the sides:

The equation of a line passing through two points with position vectors $\vec{a}$ and $\vec{b}$ is given by $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$.

Side AB:

$\vec{a} = 4\hat{i} + 7\hat{j} + 8\hat{k}$

$\vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

$\vec{b} - \vec{a} = (2-4)\hat{i} + (3-7)\hat{j} + (4-8)\hat{k} = -2\hat{i} - 4\hat{j} - 4\hat{k}$

Equation of AB: $\vec{r} = (4\hat{i} + 7\hat{j} + 8\hat{k}) + \lambda(-2\hat{i} - 4\hat{j} - 4\hat{k})$

In Cartesian form: $\frac{x-4}{-2} = \frac{y-7}{-4} = \frac{z-8}{-4}$ or $\frac{x-4}{1} = \frac{y-7}{2} = \frac{z-8}{2}$

Side BC:

$\vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

$\vec{c} = -1\hat{i} - 2\hat{j} + 1\hat{k}$

$\vec{c} - \vec{b} = (-1-2)\hat{i} + (-2-3)\hat{j} + (1-4)\hat{k} = -3\hat{i} - 5\hat{j} - 3\hat{k}$

Equation of BC: $\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) + \mu(-3\hat{i} - 5\hat{j} - 3\hat{k})$

In Cartesian form: $\frac{x-2}{-3} = \frac{y-3}{-5} = \frac{z-4}{-3}$

Side CD:

$\vec{c} = -1\hat{i} - 2\hat{j} + 1\hat{k}$

$\vec{d} = 1\hat{i} + 2\hat{j} + 5\hat{k}$

$\vec{d} - \vec{c} = (1-(-1))\hat{i} + (2-(-2))\hat{j} + (5-1)\hat{k} = 2\hat{i} + 4\hat{j} + 4\hat{k}$

Equation of CD: $\vec{r} = (-1\hat{i} - 2\hat{j} + 1\hat{k}) + \nu(2\hat{i} + 4\hat{j} + 4\hat{k})$

In Cartesian form: $\frac{x+1}{2} = \frac{y+2}{4} = \frac{z-1}{4}$ or $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{2}$

Side DA:

$\vec{d} = 1\hat{i} + 2\hat{j} + 5\hat{k}$

$\vec{a} = 4\hat{i} + 7\hat{j} + 8\hat{k}$

$\vec{a} - \vec{d} = (4-1)\hat{i} + (7-2)\hat{j} + (8-5)\hat{k} = 3\hat{i} + 5\hat{j} + 3\hat{k}$

Equation of DA: $\vec{r} = (1\hat{i} + 2\hat{j} + 5\hat{k}) + \tau(3\hat{i} + 5\hat{j} + 3\hat{k})$

In Cartesian form: $\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-5}{3}$

2. Find the foot of the perpendicular from A to CD:

Let the coordinates of the foot of the perpendicular be P.

The equation of line CD is $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{2} = k$

So, the coordinates of any point on CD are $(k-1, 2k-2, 2k+1)$.

Let P be $(k-1, 2k-2, 2k+1)$.

Direction ratios of AP are $(k-1-4, 2k-2-7, 2k+1-8) = (k-5, 2k-9, 2k-7)$.

Direction ratios of CD are $(1, 2, 2)$.

Since AP is perpendicular to CD, the dot product of their direction ratios is zero.

$1(k-5) + 2(2k-9) + 2(2k-7) = 0$

$k - 5 + 4k - 18 + 4k - 14 = 0$

$9k - 37 = 0$

$k = \frac{37}{9}$

Coordinates of P are $(\frac{37}{9}-1, 2(\frac{37}{9})-2, 2(\frac{37}{9})+1) = (\frac{28}{9}, \frac{56}{9}, \frac{83}{9})$.

Correct Answer: Equations of sides: AB: $\frac{x-4}{1} = \frac{y-7}{2} = \frac{z-8}{2}$, BC: $\frac{x-2}{-3} = \frac{y-3}{-5} = \frac{z-4}{-3}$, CD: $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{2}$, DA: $\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-5}{3}$. Foot of perpendicular: $(\frac{28}{9}, \frac{56}{9}, \frac{83}{9})$

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an APPLY question because it requires students to apply their knowledge of vector equations of lines and planes in 3D geometry to find the equations of the sides of a parallelogram and the foot of the perpendicular.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to apply a series of well-defined steps to find the equations of the sides and the foot of the perpendicular. This involves using formulas and procedures related to 3D geometry.
Syllabus Audit: In the context of CBSE Class 12, this is classified as COMPETENCY. The question requires application of concepts to solve a geometrical problem, rather than rote recall of formulas.