The given differential equation is \((\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}})\frac{dx}{dy}=1\). We can rewrite this as:
\(\frac{dy}{dx} = \frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\)
Rearrange the equation to the standard form of a first-order linear differential equation: \(\frac{dy}{dx} + P(x)y = Q(x)\)
\(\frac{dy}{dx} + \frac{1}{\sqrt{x}}y = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}\)
Here, \(P(x) = \frac{1}{\sqrt{x}}\) and \(Q(x) = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}\)
The integrating factor (IF) is given by \(e^{\int P(x) dx}\)
So, \(IF = e^{\int \frac{1}{\sqrt{x}} dx}\)
Let's evaluate the integral: \(\int \frac{1}{\sqrt{x}} dx = \int x^{-1/2} dx = \frac{x^{1/2}}{1/2} + C = 2\sqrt{x} + C\)
Therefore, the integrating factor is \(e^{2\sqrt{x}}\)
Correct Answer: \(e^{2\sqrt{x}}\)
Given the differential equation: \((\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}})\frac{dx}{dy}=1\)
Rewrite the equation as: \(\frac{dy}{dx} = \frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\)
Rearrange the equation into the standard form: \(\frac{dy}{dx} + \frac{y}{\sqrt{x}} = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}\)
Here, \(P(x) = \frac{1}{\sqrt{x}}\) and \(Q(x) = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}\)
The integrating factor (IF) is given by: \(IF = e^{\int P(x) dx}\)
So, \(IF = e^{\int \frac{1}{\sqrt{x}} dx}\)
Evaluate the integral: \(\int \frac{1}{\sqrt{x}} dx = \int x^{-1/2} dx = 2x^{1/2} + C = 2\sqrt{x} + C\)
Therefore, the integrating factor is: \(e^{2\sqrt{x}}\)
Correct Answer: \(e^{2\sqrt{x}}\)
AI generated content. Review strictly for academic accuracy.