Given the differential equation: \(\log(\frac{dy}{dx}) = 3x + 4y\)
Exponentiate both sides to remove the logarithm: \(\frac{dy}{dx} = e^{3x + 4y}\)
Rewrite the exponential term: \(\frac{dy}{dx} = e^{3x} \cdot e^{4y}\)
Separate the variables: \(e^{-4y} dy = e^{3x} dx\)
Integrate both sides: \(\int e^{-4y} dy = \int e^{3x} dx\)
Perform the integration: \(-\frac{1}{4} e^{-4y} = \frac{1}{3} e^{3x} + C\)
Multiply both sides by -12 to eliminate fractions: \(3e^{-4y} = -4e^{3x} - 12C\)
Rearrange the equation: \(3e^{-4y} + 4e^{3x} + 12C = 0\)
Correct Answer: \(3e^{-4y}+4e^{3x}+12C=0\)<\/strong>
AI generated content. Review strictly for academic accuracy.