First, rewrite the given differential equation in the standard form: \(\frac{dy}{dx} + P(x)y = Q(x)\). Divide the entire equation by \((1-x^2)\):
\(\frac{dy}{dx} + \frac{x}{1-x^2}y = \frac{ax}{1-x^2}\)
Identify \(P(x)\). In this case, \(P(x) = \frac{x}{1-x^2}\).
Calculate the integrating factor (IF) using the formula: \(IF = e^{\int P(x) dx}\). So,
\(IF = e^{\int \frac{x}{1-x^2} dx}\)
To evaluate the integral \(\int \frac{x}{1-x^2} dx\), use substitution. Let \(u = 1-x^2\), then \(du = -2x dx\), so \(x dx = -\frac{1}{2} du\). Therefore,
\(\int \frac{x}{1-x^2} dx = \int \frac{-\frac{1}{2}}{u} du = -\frac{1}{2} \int \frac{1}{u} du = -\frac{1}{2} \ln|u| = -\frac{1}{2} \ln|1-x^2|\)
Since \(-1 \lt x \lt 1\), \(1-x^2\) is always positive, so we can drop the absolute value: \(-\frac{1}{2} \ln(1-x^2)\).
Now, substitute this back into the integrating factor formula:
\(IF = e^{-\frac{1}{2} \ln(1-x^2)} = e^{\ln((1-x^2)^{-\frac{1}{2}})} = (1-x^2)^{-\frac{1}{2}} = \frac{1}{\sqrt{1-x^2}}\)
Correct Answer: \(\frac{1}{\sqrt{1-x^{2}}}\)
AI generated content. Review strictly for academic accuracy.