Class CBSE Class 12 Mathematics Applications of Derivatives Q #907
KNOWLEDGE BASED
APPLY
2 Marks 2023 VSA
Show that the function $f(x)=\frac{16\sin x}{4+\cos x}-x$, is strictly decreasing in $(\frac{\pi}{2},\pi)$

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

  1. Step 1: Find the derivative of the function \( f(x) \).

    Given \( f(x) = \frac{16\sin x}{4 + \cos x} - x \), we need to find \( f'(x) \).

    Using the quotient rule for differentiation, \( \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \), we differentiate \( \frac{16\sin x}{4 + \cos x} \):

    \( \frac{d}{dx} \left( \frac{16\sin x}{4 + \cos x} \right) = \frac{(4 + \cos x)(16\cos x) - (16\sin x)(-\sin x)}{(4 + \cos x)^2} \)

    \( = \frac{64\cos x + 16\cos^2 x + 16\sin^2 x}{(4 + \cos x)^2} \)

    \( = \frac{64\cos x + 16(\cos^2 x + \sin^2 x)}{(4 + \cos x)^2} \)

    \( = \frac{64\cos x + 16}{(4 + \cos x)^2} \)

    \( = \frac{16(4 + \cos x)}{(4 + \cos x)^2} \)

    \( = \frac{16}{4 + \cos x} \)

    Now, differentiate \( -x \):

    \( \frac{d}{dx} (-x) = -1 \)

    So, \( f'(x) = \frac{16}{4 + \cos x} - 1 \)

  2. Step 2: Simplify \( f'(x) \).

    \( f'(x) = \frac{16 - (4 + \cos x)}{4 + \cos x} \)

    \( = \frac{12 - \cos x}{4 + \cos x} \)

  3. Step 3: Analyze the sign of \( f'(x) \) in the interval \( (\frac{\pi}{2}, \pi) \).

    In the interval \( (\frac{\pi}{2}, \pi) \), \( \cos x \) is negative and \( -1 \leq \cos x < 0 \).

    Therefore, \( 12 - \cos x > 0 \) because \( 12 - \cos x \geq 12 - (-1) = 13 > 0 \).

    Also, \( 4 + \cos x > 0 \) because \( 4 + \cos x \geq 4 + (-1) = 3 > 0 \).

    However, we need to show that \( f'(x) < 0 \) for the function to be strictly decreasing.

    Let's re-examine \( f'(x) = \frac{12 - \cos x}{4 + \cos x} - 1 \). There was an error in the initial calculation of f'(x). The correct derivative is:

    \(f'(x) = \frac{16}{4 + \cos x} - 1 = \frac{16 - (4 + \cos x)}{4 + \cos x} = \frac{12 - \cos x}{4 + \cos x}\)

    To determine if the function is strictly decreasing, we need to check if \(f'(x) < 0\) in the interval \((\frac{\pi}{2}, \pi)\).

    Since \(-1 \le \cos x < 0\) in the interval \((\frac{\pi}{2}, \pi)\), we have:

    \(12 - \cos x > 0\) (because \(12 - \cos x \ge 12 - (-1) = 13 > 0\))

    \(4 + \cos x > 0\) (because \(4 + \cos x \ge 4 - 1 = 3 > 0\))

    Thus, \(f'(x) = \frac{12 - \cos x}{4 + \cos x} > 0\) in the interval \((\frac{\pi}{2}, \pi)\).

    There must be an error in the problem statement. Let's reconsider the original function:

    \(f(x) = \frac{16\sin x}{4 + \cos x} - x\)

    \(f'(x) = \frac{16(4 + \cos x)\cos x - 16\sin x(-\sin x)}{(4 + \cos x)^2} - 1\)

    \(f'(x) = \frac{64\cos x + 16\cos^2 x + 16\sin^2 x}{(4 + \cos x)^2} - 1\)

    \(f'(x) = \frac{64\cos x + 16}{(4 + \cos x)^2} - 1\)

    \(f'(x) = \frac{16(4\cos x + 1)}{(4 + \cos x)^2} - 1\)

    \(f'(x) = \frac{16(4\cos x + 1) - (4 + \cos x)^2}{(4 + \cos x)^2}\)

    \(f'(x) = \frac{64\cos x + 16 - (16 + 8\cos x + \cos^2 x)}{(4 + \cos x)^2}\)

    \(f'(x) = \frac{56\cos x - \cos^2 x}{(4 + \cos x)^2}\)

    \(f'(x) = \frac{\cos x(56 - \cos x)}{(4 + \cos x)^2}\)

    In the interval \((\frac{\pi}{2}, \pi)\), \(\cos x < 0\), and \(56 - \cos x > 0\), and \((4 + \cos x)^2 > 0\).

    Therefore, \(f'(x) < 0\) in the interval \((\frac{\pi}{2}, \pi)\).

  4. Step 4: Conclusion

    Since \( f'(x) < 0 \) in the interval \( (\frac{\pi}{2}, \pi) \), the function \( f(x) \) is strictly decreasing in this interval.

Correct Answer: f(x) is strictly decreasing in (π/2, π)

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an APPLY question because the student needs to apply the concepts of derivatives and monotonicity to prove that the given function is strictly decreasing in the specified interval.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to follow a specific procedure involving differentiation and analysis of the sign of the derivative to determine the monotonicity of the function.
Syllabus Audit: In the context of CBSE Class 12, this is classified as KNOWLEDGE. The question directly tests the student's understanding and application of calculus concepts related to derivatives and monotonicity, which are core topics in the syllabus.