Class CBSE Class 12 Mathematics Inverse Trigonometric Functions Q #945
KNOWLEDGE BASED
APPLY
2 Marks 2024 VSA
Express \(\tan^{-1}(\frac{\cos~x}{1-\sin~x})\) where \(\frac{-\pi}{2}\lt x\lt \frac{\pi}{2}\) in the simplest form.
Explanation
Let $y = \tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$.First, use half-angle identities to rewrite the numerator and denominator:$$\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)$$$$1 - \sin x = \cos^2\frac{x}{2} + \sin^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} = \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2$$Substitute these back into the expression:$$\frac{\cos x}{1-\sin x} = \frac{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)}{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2}$$Cancel the common term $\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)$:$$= \frac{\cos\frac{x}{2} + \sin\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}$$Divide the numerator and denominator by $\cos\frac{x}{2}$:$$= \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}}$$Since $\tan\frac{\pi}{4} = 1$, we can rewrite this as:$$= \frac{\tan\frac{\pi}{4} + \tan\frac{x}{2}}{1 - \tan\frac{\pi}{4}\tan\frac{x}{2}}$$Using the identity $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$:$$= \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$$Therefore:$$y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right)$$Since $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the angle lies within the principal range, so:$$y = \frac{\pi}{4} + \frac{x}{2}$$

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

**Step 1: Rewrite the expression using trigonometric identities** We can rewrite \(\cos x\) and \(\sin x\) using half-angle formulas: \[\cos x = \cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})\] \[\sin x = 2\sin(\frac{x}{2})\cos(\frac{x}{2})\] So, the expression becomes: \[\tan^{-1}\left(\frac{\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})}{1 - 2\sin(\frac{x}{2})\cos(\frac{x}{2})}\right)\]
**Step 2: Simplify the denominator** Notice that the denominator can be written as a perfect square: \[1 - 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = \sin^2(\frac{x}{2}) + \cos^2(\frac{x}{2}) - 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = \left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2\] Thus, the expression becomes: \[\tan^{-1}\left(\frac{\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2})}{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2}\right)\]
**Step 3: Factor the numerator** The numerator is a difference of squares: \[\cos^2(\frac{x}{2}) - \sin^2(\frac{x}{2}) = \left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)\left(\cos(\frac{x}{2}) + \sin(\frac{x}{2})\right)\] So, the expression becomes: \[\tan^{-1}\left(\frac{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)\left(\cos(\frac{x}{2}) + \sin(\frac{x}{2})\right)}{\left(\cos(\frac{x}{2}) - \sin(\frac{x}{2})\right)^2}\right)\]
**Step 4: Cancel out the common factor** \[\tan^{-1}\left(\frac{\cos(\frac{x}{2}) + \sin(\frac{x}{2})}{\cos(\frac{x}{2}) - \sin(\frac{x}{2})}\right)\]
**Step 5: Divide both numerator and denominator by \(\cos(\frac{x}{2})\)** \[\tan^{-1}\left(\frac{1 + \tan(\frac{x}{2})}{1 - \tan(\frac{x}{2})}\right)\]
**Step 6: Use the tangent addition formula** Recall that \(\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\). We can rewrite the expression as: \[\tan^{-1}\left(\frac{\tan(\frac{\pi}{4}) + \tan(\frac{x}{2})}{1 - \tan(\frac{\pi}{4})\tan(\frac{x}{2})}\right) = \tan^{-1}\left(\tan(\frac{\pi}{4} + \frac{x}{2})\right)\]
**Step 7: Simplify** Since \(\frac{-\pi}{2} \lt x \lt \frac{\pi}{2}\), we have \(\frac{-\pi}{4} \lt \frac{x}{2} \lt \frac{\pi}{4}\), and thus \(0 \lt \frac{\pi}{4} + \frac{x}{2} \lt \frac{\pi}{2}\). Therefore, \[\tan^{-1}\left(\tan(\frac{\pi}{4} + \frac{x}{2})\right) = \frac{\pi}{4} + \frac{x}{2}\]

Correct Answer: \(\frac{\pi}{4} + \frac{x}{2}\)

AI generated content. Review strictly for academic accuracy.

Pedagogical Audit
Bloom's Analysis: This is an APPLY question because the student needs to apply trigonometric identities and simplification techniques to express the given expression in its simplest form.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to follow a specific procedure involving trigonometric identities and algebraic manipulation to simplify the given expression.
Syllabus Audit: In the context of CBSE Class 12, this is classified as KNOWLEDGE. The question directly tests the student's knowledge of trigonometric identities and their application in simplifying inverse trigonometric functions, which is a standard topic covered in the textbook.