Analyze the Assertion:
Given: $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=256$ and $|\vec{b}|=8$
We know that $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$ and $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
Substitute the formulas:
$(|\vec{a}||\vec{b}| \sin \theta)^{2}+(|\vec{a}||\vec{b}| \cos \theta)^{2}=256$
$|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta=256$
$|\vec{a}|^{2}|\vec{b}|^{2}(\sin ^{2} \theta+\cos ^{2} \theta)=256$
Use the trigonometric identity:
Since $\sin ^{2} \theta+\cos ^{2} \theta=1$, we have $|\vec{a}|^{2}|\vec{b}|^{2}=256$
Substitute the value of $|\vec{b}|$:
$|\vec{a}|^{2}(8)^{2}=256$
$|\vec{a}|^{2}(64)=256$
Solve for $|\vec{a}|$:
$|\vec{a}|^{2}=\frac{256}{64}=4$
$|\vec{a}|=\sqrt{4}=2$
Conclusion for Assertion:
The assertion $|\vec{a}|=2$ is correct.
Analyze the Reason:
The reason provides the correct formulas and trigonometric identity used in solving the assertion.
Final Answer:
Both Assertion and Reason are correct, and the Reason is a correct explanation of the Assertion.
Correct Answer: Both Assertion and Reason are correct, and the Reason is a correct explanation of the Assertion.
AI generated content. Review strictly for academic accuracy.