The teacher hasn't uploaded a solution for this question yet.
First, we need to find the vector $\vec{BC}$. We know that $\vec{AC} = \vec{AB} + \vec{BC}$, so $\vec{BC} = \vec{AC} - \vec{AB}$.
$\vec{BC} = (3\hat{i} - \hat{j} + 4\hat{k}) - (\hat{i} + \hat{j} + 2\hat{k}) = 2\hat{i} - 2\hat{j} + 2\hat{k}$
Since D is the midpoint of BC, $\vec{BD} = \frac{1}{2}\vec{BC}$.
$\vec{BD} = \frac{1}{2}(2\hat{i} - 2\hat{j} + 2\hat{k}) = \hat{i} - \hat{j} + \hat{k}$
Now, we need to find $\vec{AD}$. We know that $\vec{AD} = \vec{AB} + \vec{BD}$.
$\vec{AD} = (\hat{i} + \hat{j} + 2\hat{k}) + (\hat{i} - \hat{j} + \hat{k}) = 2\hat{i} + 0\hat{j} + 3\hat{k} = 2\hat{i} + 3\hat{k}$
Correct Answer: $2\hat{i}+3\hat{k}$
AI generated content. Review strictly for academic accuracy.