The teacher hasn't uploaded a solution for this question yet.
(a)
Given: |→a| = 3, |→b| = 2/3, |→a x →b| = 1
We know that |→a x →b| = |→a| |→b| sin θ, where θ is the angle between →a and →b.
So, 1 = 3 * (2/3) * sin θ
1 = 2 sin θ
sin θ = 1/2
θ = π/6
(b)
Given: →a = î - ĵ + 3k and →b = 2î - 7ĵ + k
Area of parallelogram = |→a x →b|
→a x →b = | î ĵ k |
| 1 -1 3 |
| 2 -7 1 |
→a x →b = î(-1 + 21) - ĵ(1 - 6) + k(-7 + 2)
→a x →b = 20î + 5ĵ - 5k
|→a x →b| = √(20² + 5² + (-5)²) = √(400 + 25 + 25) = √450 = 15√2
Correct Answer: (a) π/6 OR (b) 15√2
AI generated content. Review strictly for academic accuracy.