Class JEE Mathematics ALL Q #1210
COMPETENCY BASED
APPLY
4 Marks 2026 JEE Main 2026 (Online) 22 January Morning Shift MCQ SINGLE
If $\int(\cos x)^{-5/2}(\sin x)^{-11/2}dx=\frac{P_{1}}{q_{1}}(\cot x)^{9/2}+\frac{P_{2}}{q_{2}}(\cot x)^{5/2}+\frac{P_{3}}{q_{3}}(\cot x)^{1/2}-\frac{P_{4}}{q_{4}}(\cot x)^{-3/2}+C$, then $\frac{15P_{1}P_{2}P_{3}P_{4}}{q_{1}q_{2}q_{3}q_{4}}$ is equal to :
(A) 14
(B) 16
(C) 10
(D) 9
Correct Answer: B

AI Tutor Explanation

Powered by Gemini

Step-by-Step Solution

Step 1: Simplify the Integral

Let $I = \int (\cos x)^{-5/2} (\sin x)^{-11/2} dx = \int \frac{dx}{\cos^{5/2}x \sin^{11/2}x}$

To integrate, we rearrange terms to use $\sec x$ and $\tan x$. Multiply numerator and denominator by $\sec^{11/2} x$ (effectively dividing denominator by $\cos^{11/2} x$):

$I = \int \frac{\sec^8 x}{\tan^{11/2} x} dx$


Step 2: Substitution

Let $t = \tan x$. Then $dt = \sec^2 x dx$.

We can rewrite $\sec^8 x$ as $\sec^6 x \cdot \sec^2 x = (\sec^2 x)^3 \cdot \sec^2 x = (1 + t^2)^3 \sec^2 x$.

Substituting into the integral:

$I = \int \frac{(1 + t^2)^3}{t^{11/2}} dt$


Step 3: Expansion and Integration

Expand $(1 + t^2)^3$ using the binomial theorem:

$I = \int \frac{1 + 3t^2 + 3t^4 + t^6}{t^{11/2}} dt = \int (t^{-11/2} + 3t^{-7/2} + 3t^{-3/2} + t^{1/2}) dt$

Integrate term by term:

$I = \frac{t^{-9/2}}{-9/2} + 3\frac{t^{-5/2}}{-5/2} + 3\frac{t^{-1/2}}{-1/2} + \frac{t^{3/2}}{3/2} + C$

$I = -\frac{2}{9}t^{-9/2} - \frac{6}{5}t^{-5/2} - 6t^{-1/2} + \frac{2}{3}t^{3/2} + C$


Step 4: Back-Substitution

Convert back to $x$ using $t = \tan x = \frac{1}{\cot x}$:

$I = -\frac{2}{9}(\cot x)^{9/2} - \frac{6}{5}(\cot x)^{5/2} - 6(\cot x)^{1/2} + \frac{2}{3}(\cot x)^{-3/2} + C$


Step 5: Coefficient Comparison

Given the form: $\frac{P_{1}}{q_{1}}(\cot x)^{9/2}+\frac{P_{2}}{q_{2}}(\cot x)^{5/2}+\frac{P_{3}}{q_{3}}(\cot x)^{1/2}-\frac{P_{4}}{q_{4}}(\cot x)^{-3/2}+C$

Comparing coefficients:

$\frac{P_1}{q_1} = -\frac{2}{9}$

$\frac{P_2}{q_2} = -\frac{6}{5}$

$\frac{P_3}{q_3} = -6$

$-\frac{P_4}{q_4} = \frac{2}{3} \implies \frac{P_4}{q_4} = -\frac{2}{3}$


Step 6: Final Calculation

Value = $15 \cdot \frac{P_1}{q_1} \cdot \frac{P_2}{q_2} \cdot \frac{P_3}{q_3} \cdot \frac{P_4}{q_4}$

$= 15 \cdot (-\frac{2}{9}) \cdot (-\frac{6}{5}) \cdot (-6) \cdot (-\frac{2}{3})$

Since there are four negatives, the result is positive:

$= 15 \cdot \frac{2}{9} \cdot \frac{6}{5} \cdot 6 \cdot \frac{2}{3} = \frac{15 \cdot 2 \cdot 6 \cdot 6 \cdot 2}{9 \cdot 5 \cdot 3} = \frac{2160}{135} = 16$

|
AI Suggestion: Option B
Pedagogical Audit
Bloom's Analysis: This is an APPLY question because it requires the student to apply integration techniques and algebraic manipulation to solve the problem.
Knowledge Dimension: PROCEDURAL
Justification: The question requires the student to execute a series of steps involving trigonometric manipulation, integration, and algebraic comparison to arrive at the final answer.
Syllabus Audit: In the context of JEE, this is classified as COMPETENCY. It requires application of integration techniques and algebraic manipulation, going beyond simple recall of formulas.

AI generated content. Review strictly for academic accuracy.