The teacher hasn't uploaded a solution for this question yet.
We can use L'Hopital's rule or Taylor series expansion to evaluate the limit.
Method 1: L'Hopital's Rule
$\lim_{x\to 0} \frac{\sin(2x) - 2 \sin x}{x^3}$
Applying L'Hopital's rule once:
= $\lim_{x\to 0} \frac{2\cos(2x) - 2 \cos x}{3x^2}$
Applying L'Hopital's rule again:
= $\lim_{x\to 0} \frac{-4\sin(2x) + 2 \sin x}{6x}$
Applying L'Hopital's rule once more:
= $\lim_{x\to 0} \frac{-8\cos(2x) + 2 \cos x}{6}$
= $\frac{-8(1) + 2(1)}{6} = \frac{-6}{6} = -1$
Method 2: Taylor Series Expansion
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ...$
$\sin(2x) = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - ... = 2x - \frac{8x^3}{6} + \frac{32x^5}{120} - ...$
$\sin(2x) - 2\sin x = (2x - \frac{8x^3}{6} + ...) - 2(x - \frac{x^3}{6} + ...)$
= $2x - \frac{4x^3}{3} - 2x + \frac{x^3}{3} + O(x^5) = -x^3 + O(x^5)$
$\lim_{x\to 0} \frac{\sin(2x) - 2 \sin x}{x^3} = \lim_{x\to 0} \frac{-x^3}{x^3} = -1$
Correct Answer: -1
Method 1: L'Hopital's Rule
Let $L = \lim_{x\to 0} \frac{\sin(2x) - 2 \sin x}{x^3}$
Since the limit is of the form $\frac{0}{0}$, we can apply L'Hopital's rule.
Applying L'Hopital's rule once:
$L = \lim_{x\to 0} \frac{2\cos(2x) - 2 \cos x}{3x^2}$
This is still of the form $\frac{0}{0}$, so we apply L'Hopital's rule again:
$L = \lim_{x\to 0} \frac{-4\sin(2x) + 2 \sin x}{6x}$
This is still of the form $\frac{0}{0}$, so we apply L'Hopital's rule once more:
$L = \lim_{x\to 0} \frac{-8\cos(2x) + 2 \cos x}{6}$
Now, we can directly substitute $x = 0$:
$L = \frac{-8\cos(0) + 2 \cos(0)}{6} = \frac{-8(1) + 2(1)}{6} = \frac{-6}{6} = -1$
Method 2: Taylor Series Expansion
We can use the Taylor series expansions for $\sin x$ and $\sin(2x)$ around $x=0$.
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ...$
$\sin(2x) = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - ... = 2x - \frac{8x^3}{6} + \frac{32x^5}{120} - ...$
Then, $\sin(2x) - 2\sin x = (2x - \frac{8x^3}{6} + ...) - 2(x - \frac{x^3}{6} + ...)$
$= 2x - \frac{4x^3}{3} - 2x + \frac{x^3}{3} + O(x^5) = -x^3 + O(x^5)$
Therefore, $\lim_{x\to 0} \frac{\sin(2x) - 2 \sin x}{x^3} = \lim_{x\to 0} \frac{-x^3 + O(x^5)}{x^3} = -1$
Correct Answer: -1
AI generated content. Review strictly for academic accuracy.
No other questions found.