Class JEE Mathematics Sets, Relations, and Functions Q #1098
COMPETENCY BASED
REMEMBER
4 Marks 2021 JEE Main 2021 (Online) 27th August Morning Shift NUMERICAL
If A = {x $\in$ R : |x $-$ 2| > 1}, B = {x $\in$ R : $\sqrt {{x^2} - 3} $ > 1}, C = {x $\in$ R : |x $-$ 4| $\ge$ 2} and Z is the set of all integers, then the number of subsets of the set (A $\cap$ B $\cap$ C)c $\cap$ Z is ________________.

More from this Chapter

MCQ_SINGLE
Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and R be a relation on A defined by $xRy$ if and only if $2x - y \in \{0, 1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to:
MCQ_SINGLE
Let $A = {1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $xRy$ if and only if $4x \le 5y$. Let $m$ be the number of elements in $R$ and $n$ be the minimum number of elements from $A \times A$ that are required to be added to $R$ to make it a symmetric relation. Then $m + n$ is equal to :
NUMERICAL
Let A = {n $ \in $ N: n is a 3-digit number} B = {9k + 2: k $ \in $ N} and C = {9k + $l$: k $ \in $ N} for some $l ( 0 < l < 9)$ If the sum of all the elements of the set A $ \cap $ (B $ \cup $ C) is 274 $ \times $ 400, then $l$ is equal to ________.
MCQ_SINGLE
In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is
MCQ_SINGLE
An organization awarded $48$ medals in event 'A', $25$ in event 'B' and $18$ in event 'C'. If these medals went to total $60$ men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
View All Questions