MCQ_SINGLE
If R is the smallest equivalence relation on the set ${1, 2, 3, 4}$ such that ${((1, 2), (1, 3))} \subset R$, then the number of elements in $R$ is __________.
MCQ_SINGLE
If R is the smallest equivalence relation on the set ${1, 2, 3, 4}$ such that ${((1, 2), (1, 3))} \subset R$, then the number of elements in $R$ is __________.
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
MCQ_SINGLE
Let $P(S)$ denote the power set of $S=${$1, 2, 3, …, 10$}. Define the relations $R_1$ and $R_2$ on $P(S)$ as $AR_1B$ if $(A \cap B^c) \cup (B \cap A^c) = \emptyset$ and $AR_2B$ if $A \cup B^c = B \cup A^c$, $\forall A, B \in P(S)$. Then :
NUMERICAL
The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.