MCQ_SINGLE
Consider the relations $R_1$ and $R_2$ defined as $aR_1b \Leftrightarrow a^2 + b^2 = 1$ for all $a, b \in R$ and $(a, b)R_2(c, d) \Leftrightarrow a+ d = b + c$ for all $(a, b), (c, d) \in N \times N$. Then:
NUMERICAL
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is __________.
MCQ_SINGLE
Let $A = {2, 3, 4}$ and $B = {8, 9, 12}$. Then the number of elements in the relation $R = {((a_1, b_1), (a_2, b_2)) \in (A \times B, A \times B) : a_1$ divides $b_2$ and $a_2$ divides $b_1}$ is :
MCQ_SINGLE
Consider the following relations $R = \{(x, y) | x, y$ are real numbers and $x = wy$ for some rational number $w\}$; $S = \{(\frac{m}{n}, \frac{p}{q}) | m, n, p$ and $q$ are integers such that $n, q \neq 0$ and $qm = pn\}$. Then