Class JEE Mathematics Sets, Relations, and Functions Q #1046
COMPETENCY BASED
APPLY
4 Marks 2021 JEE Main 2021 (Online) 26th August Morning Shift MCQ SINGLE
Out of all the patients in a hospital 89% are found to be suffering from heart ailment and 98% are suffering from lungs infection. If K% of them are suffering from both ailments, then K can not belong to the set :
(A) {80, 83, 86, 89}
(B) {84, 86, 88, 90}
(C) {79, 81, 83, 85}
(D) {84, 87, 90, 93}
Correct Answer: C

More from this Chapter

NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.
MCQ_SINGLE
Let $R$ be the set of real numbers. Statement I: $A = \{(x, y) \in R \times R: y - x \text{ is an integer }\}$ is an equivalence relation on $R$. Statement II: $B = \{(x,y) \in R \times R: x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation on $R$.
NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Two sets A and B are as under : A = {$(a, b) ∈ R × R : |a - 5| < 1$ and $|b - 5| < 1$}; B = {$(a, b) ∈ R × R : 4(a - 6)^2 + 9(b - 5)^2 ≤ 36$}; Then
View All Questions