cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1011
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2025
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ SINGLE
Let $A = {(x, y) ∈ R × R : |x + y| ⩾ 3}$ and $B = {(x, y) ∈ R × R : |x| + |y| ≤ 3}$. If $C = {(x, y) ∈ A ∩ B : x = 0$ or $y = 0}$, then $\sum_{(x, y) ∈ C} |x + y|$ is :
(A)
18
(B)
24
(C)
15
(D)
12
AI Explanation
Prev
Next
Correct Answer: D
Explanation
From the image, we can determine that the points in set C are $(3,0)$, $(-3,0)$, $(0,3)$ and $(0,-3)$.
Thus, $C = {(3, 0), (-3, 0), (0, 3), (0, -3)}$.
$\sum |x + y| = |3 + 0| + |-3 + 0| + |0 + 3| + |0 + (-3)| = 3 + 3 + 3 + 3 = 12$.
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
Consider the relations $R_1$ and $R_2$ defined as $aR_1b \Leftrightarrow a^2 + b^2 = 1$ for all $a, b \in R$ and $(a, b)R_2(c, d) \Leftrightarrow a+ d = b + c$ for all $(a, b), (c, d) \in N \times N$. Then:
NUMERICAL
5 Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $R$ is __________.
MCQ_SINGLE
Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is :
MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :
MCQ_SINGLE
Let A = {0, 1, 2, 3, 4, 5}. Let R be a relation on A defined by (x, y) ∈ R if and only if max{x, y} ∈ {3, 4}. Then among the statements (S1): The number of elements in R is 18, and (S2): The relation R is symmetric but neither reflexive nor transitive
View All Questions