Class JEE Mathematics Sets, Relations, and Functions Q #1095
COMPETENCY BASED
REMEMBER
4 Marks 2022 JEE Main 2022 (Online) 26th June Morning Shift NUMERICAL
Let A = {n $\in$ N : H.C.F. (n, 45) = 1} and Let B = {2k : k $\in$ {1, 2, ......., 100}}. Then the sum of all the elements of A $\cap$ B is ____________.

More from this Chapter

NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.
MCQ_SINGLE
Let $Z$ be the set of integers. If $A = {x \in Z : 2(x + 2) (x^2 - 5x + 6) = 1}$ and $B = {x \in Z : -3 < 2x - 1 < 9}$, then the number of subsets of the set $A \times B$, is
MCQ_SINGLE
Two newspapers A and B are published in a city. It is known that $25$% of the city populations reads A and $20$% reads B while $8$% reads both A and B. Further, $30$% of those who read A but not B look into advertisements and $40$% of those who read B but not A also look into advertisements, while $50$% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
View All Questions