Class JEE Mathematics Sets, Relations, and Functions Q #1008
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 28th January Morning Shift MCQ SINGLE
The relation $R = {(x, y) : x, y ∈ Z$ and $x + y$ is even $}$ is:
(A) reflexive and transitive but not symmetric
(B) reflexive and symmetric but not transitive
(C) an equivalence relation
(D) symmetric and transitive but not reflexive
Correct Answer: C
Explanation
The given relation is $R = {(x, y) : x, y ∈ Z$ and $x + y$ is even $}$.

Reflexive: For any $x ∈ Z$, $x + x = 2x$, which is even. So, $(x, x) ∈ R$. Thus, $R$ is reflexive.

Symmetric: If $(x, y) ∈ R$, then $x + y$ is even. Since $x + y = y + x$, $y + x$ is also even. So, $(y, x) ∈ R$. Thus, $R$ is symmetric.

Transitive: If $(x, y) ∈ R$ and $(y, z) ∈ R$, then $x + y$ is even and $y + z$ is even. Then $(x + y) + (y + z) = x + 2y + z$ is even. Since $2y$ is even, it follows that $x + z$ is even. So, $(x, z) ∈ R$. Thus, $R$ is transitive.

Since $R$ is reflexive, symmetric, and transitive, it is an equivalence relation.

More from this Chapter

MCQ_SINGLE
Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on $A$ defined by $xRy$ if and only if $y = \max\{x, 1\}$. Let $l$ be the number of elements in R. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to
NUMERICAL
Let A = {n $\in$ N | n2 $\le$ n + 10,000}, B = {3k + 1 | k$\in$ N} an dC = {2k | k$\in$N}, then the sum of all the elements of the set A $\cap$(B $-$ C) is equal to _____________.
MCQ_SINGLE
Let $A = {0, 1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $(x, y) \in R$ if and only if $\max{x, y} \in {3, 4}$. Then among the statements (S1): The number of elements in $R$ is $18$, and (S2): The relation $R$ is symmetric but neither reflexive nor transitive
NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.
MCQ_SINGLE
Two newspapers A and B are published in a city. It is known that $25$% of the city populations reads A and $20$% reads B while $8$% reads both A and B. Further, $30$% of those who read A but not B look into advertisements and $40$% of those who read B but not A also look into advertisements, while $50$% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
View All Questions