Class JEE Mathematics Sets, Relations, and Functions Q #1107
COMPETENCY BASED
REMEMBER
4 Marks 2024 JEE Main 2024 (Online) 1st February Morning Shift NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
For $n \geq 2$, let $S_n$ denote the set of all subsets of $\{1,2, \ldots, n\}$ with no two consecutive numbers. For example $\{1,3,5\} \in S_6$, but $\{1,2,4\} \notin S_6$. Then $n\left(S_5\right)$ is equal to ________
NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$. Define $B=\{T \subseteq A$ : either $1 \notin T$ or $2 \in T\}$ and $C=\{T \subseteq A: T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is ________________.
MCQ_SINGLE
Let $P(S)$ denote the power set of $S=${$1, 2, 3, …, 10$}. Define the relations $R_1$ and $R_2$ on $P(S)$ as $AR_1B$ if $(A \cap B^c) \cup (B \cap A^c) = \emptyset$ and $AR_2B$ if $A \cup B^c = B \cup A^c$, $\forall A, B \in P(S)$. Then :
NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
View All Questions