Class JEE Mathematics Sets, Relations, and Functions Q #1054
KNOWLEDGE BASED
APPLY
4 Marks 2020 JEE Main 2020 (Online) 4th September Evening Slot MCQ SINGLE
Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$ where each $X_i$ contains $10$ elements and each $Y_i$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_i$'s and exactly $6$ of sets $Y_i$'s, then $n$ is equal to:
(A) $30$
(B) $50$
(C) $15$
(D) $45$
Correct Answer: A
Explanation
$\bigcup_{i=1}^{50} X_i = X_1, X_2,....., X_{50} = 50$ sets. Given each sets having $10$ elements.
So total elements = $50 \times 10$
$\bigcup_{i=1}^{n} Y_i = Y_1, Y_2,....., Y_n = n$ sets. Given each sets having $5$ elements.
So total elements = $5 \times n$
Now each element of set $T$ contains exactly $20$ of sets $X_i$.
So number of effective elements in set $T = \frac{50 \times 10}{20}$
Also each element of set $T$ contains exactly $6$ of sets $Y_i$.
So number of effective elements in set $T = \frac{n \times 5}{6}$
$\therefore \frac{50 \times 10}{20} = \frac{n \times 5}{6}$
$\Rightarrow n = 30$

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
Let A = {n $\in$ N : H.C.F. (n, 45) = 1} and Let B = {2k : k $\in$ {1, 2, ......., 100}}. Then the sum of all the elements of A $\cap$ B is ____________.
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
MCQ_SINGLE
Let $A = {1, 2, 3, ..., 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
MCQ_SINGLE
Let $Z$ be the set of integers. If $A = {x \in Z : 2(x + 2) (x^2 - 5x + 6) = 1}$ and $B = {x \in Z : -3 < 2x - 1 < 9}$, then the number of subsets of the set $A \times B$, is
View All Questions