NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{3,6,7,9\}$. Then the number of elements in the set $\{C \subseteq A: C \cap B \neq \phi\}$ is ___________.
MCQ_SINGLE
Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Then the relation $R = \{(x, y) \in A \times A : x + y = 7\}$ is :
MCQ_SINGLE
Let $A = {-3, -2, -1, 0, 1, 2, 3}$. Let R be a relation on A defined by $xRy$ if and only if $0 \le x^2 + 2y \le 4$. Let $l$ be the number of elements in R and $m$ be the minimum number of elements required to be added in R to make it a reflexive relation. Then $l + m$ is equal to
MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then: