MCQ_SINGLE
Let a set $A = A_1 \cup A_2 \cup ..... \cup A_k$, where $A_i \cap A_j = \phi$ for $i \neq j$, $1 \le j, j \le k$. Define the relation R from A to A by $R = \{(x, y) : y \in A_i$ if and only if $x \in A_i, 1 \le i \le k\}$. Then, R is :
NUMERICAL
Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.
MCQ_SINGLE
Let A = {0, 1, 2, 3, 4, 5}. Let R be a relation on A defined by (x, y) ∈ R if and only if max{x, y} ∈ {3, 4}. Then among the statements
(S1): The number of elements in R is 18, and
(S2): The relation R is symmetric but neither reflexive nor transitive