Class JEE Mathematics Sets, Relations, and Functions Q #1086
COMPETENCY BASED
REMEMBER
4 Marks 2023 JEE Main 2023 (Online) 8th April Morning Shift NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
For $n \geq 2$, let $S_n$ denote the set of all subsets of $\{1,2, \ldots, n\}$ with no two consecutive numbers. For example $\{1,3,5\} \in S_6$, but $\{1,2,4\} \notin S_6$. Then $n\left(S_5\right)$ is equal to ________
MCQ_SINGLE
Let $R$ be the set of real numbers. Statement I: $A = \{(x, y) \in R \times R: y - x \text{ is an integer }\}$ is an equivalence relation on $R$. Statement II: $B = \{(x,y) \in R \times R: x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation on $R$.
NUMERICAL
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that R1 = {(p, pn) : p is a prime and n $\ge$ 0 is an integer} and R2 = {(p, pn) : p is a prime and n = 0 or 1}. Then, the number of elements in R1 $-$ R2 is _______________.
NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.
View All Questions