NUMERICAL
The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
MCQ_SINGLE
Consider the following relations $R = \{(x, y) | x, y$ are real numbers and $x = wy$ for some rational number $w\}$; $S = \{(\frac{m}{n}, \frac{p}{q}) | m, n, p$ and $q$ are integers such that $n, q \neq 0$ and $qm = pn\}$. Then
NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$. Define $B=\{T \subseteq A$ : either $1 \notin T$ or $2 \in T\}$ and $C=\{T \subseteq A: T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is ________________.