MCQ_SINGLE
Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is :
MCQ_SINGLE
Let $A = {2, 3, 6, 8, 9, 11}$ and $B = {1, 4, 5, 10, 15}$. Let $R$ be a relation on $A \times B$ defined by $(a, b)R(c, d)$ if and only if $3ad - 7bc$ is an even integer. Then the relation $R$ is
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
NUMERICAL
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that R1 = {(p, pn) : p is a prime and n $\ge$ 0 is an integer} and R2 = {(p, pn) : p is a prime and n = 0 or 1}. Then, the number of elements in R1 $-$ R2 is _______________.