MCQ_SINGLE
Let $P(S)$ denote the power set of $S=${$1, 2, 3, …, 10$}. Define the relations $R_1$ and $R_2$ on $P(S)$ as $AR_1B$ if $(A \cap B^c) \cup (B \cap A^c) = \emptyset$ and $AR_2B$ if $A \cup B^c = B \cup A^c$, $\forall A, B \in P(S)$. Then :
NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.